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Abstract

The free flexural vibration of a finite cylindrical shell in contact with external fluid is investigated. The fluid is

assumed to be inviscid and irrotational. The cylindrical shell is modeled by using the Rayleigh–Ritz method based on

the Donnell–Mushtari shell theory. The fluid is modeled based on the baffled shell model, which is applied to fluid–

structure interaction problems. The kinetic energy of the fluid is derived by solving the boundary-value problem. The

natural vibration characteristics of the submerged cylindrical shell are discussed with respect to the added virtual mass

approach. In this study, the nondimensionalized added virtual mass incremental factor for the submerged finite shell is

derived. This factor can be readily used to estimate the change in the natural frequency of the shell due to the presence

of the external fluid. Numerical results showed the efficacy of the proposed method, and comparison with previous

results showed the validity of the theoretical results.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

Cylindrical shells filled with fluid are the practical elements of many types of engineering structures such as airplanes,

ships and construction buildings. External fluid plays an important role in various industrial fields such as submarine

construction, aeronautics or vibration control of nuclear reactors. Therefore, it becomes very important to analyze the

vibration characteristics of shells in contact with fluid.

The equations of motion for the cylindrical shell in vacuo have been derived by means of many theories, each based

on different assumptions (e.g. Markus (1988)). The simplest theory on the behavior of the thin cylindrical shell is the

Donnell–Mushtari theory (e.g. Leissa (1993)). In light of increasing interest in active vibration suppression of cylindrical

shell structures (Clark and Fuller, 1991), a dynamic model of the cylindrical shell structure suitable for vibration

suppression control was derived by Kwak et al. (2009) based on the Donnell–Mushtari theory. The equations of motion

were expressed in matrix form suitable for control design.

The natural vibration characteristics of the fluid-filled shells have been extensively studied (Amabili et al., 1998, 1999,

2003; Amabili and Touze, 2007; Karagiozis et al., 2005; Zhang et al., 2001a, b). On the other hand, the theoretical study
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of a finite cylindrical shells coupled with unbounded external fluid has focused on acoustic radiation from a vibrating

shell. Although many solution methods for fluid–structure interaction problems of the cylindrical shell in contact with

either an internal fluid or an external fluid have been proposed, it is very difficult to mathematically analyze the effect of

an external fluid on the natural vibration characteristics of the cylindrical shell structure. As demonstrated in (Kwak,

1991, 1997), analytical approaches have been limited to a few types of problems such as hydroelastic vibration of

circular plates.

A simple approach to solving fluid–structure interaction problems of a cylindrical shell in contact with external fluid

is to consider the cylindrical shell as being infinite so that the problem can be reduced to two-dimensions. Bleich and

Baron (1954) adopted this approach and studied the vibrations of an infinitely long cylindrical shell in contact with an

external fluid. Endo and Tosaka (1989) studied the free vibrations of an infinitely long cylindrical shell under

axisymmetric hydrodynamic pressures arising from external and internal fluids. Amabili (1997) applied the added

virtual mass approach to study infinitely long cylindrical shells partially coupled with external and internal fluids.

The analytical approach, however, cannot be applied to the coupled problem of a finite cylindrical shell submerged in

a fluid because of the boundary conditions at both ends. A popular approximate approach for studying the vibro-

acoustical behavior of a submerged finite cylindrical shell considers a baffled shell (Sandman, 1976; Stepanishen, 1982;

Laulagnet and Cyuader, 1989; Harari and Sandman, 1990; Mattei, 1995; Berot and Peseux, 1998), which implies that

semi-infinite rigid cylinders are attached to both ends of the finite cylindrical elastic shell. Although this model is not

realistic, it does allow us to derive an analytical expression for the fluid effect on the vibro-acoustical behavior of the

finite cylindrical shell. Zhang et al. (2001a, b) investigated the effects of the baffles and end-caps on the coupled

structural–acoustical behaviors of finite cylindrical shells by using the finite element and the boundary element method.

They considered the finite shell to be enclosed by either two plate end-caps or two semi-sphere end-caps, and they

compared the results with those for the baffled shell model. Their results showed that the coupled natural frequencies

are nearly the same for the three models and the sound radiation is only affected by the baffles over a small distance

close to the shell ends. Hence, it can be said that it is possible to use a finite baffled cylindrical shell to model a

submerged finite cylindrical shell. Zhang (2002) employed the wave propagation approach to analyze the natural

frequencies of submerged cylindrical shells and presented a method for the estimation of the coupled frequency.

Amabili et al. (1999) also discussed the effect of boundary conditions at the shell extremities on the nonlinear dynamics

and stability of circular cylindrical shells containing fluid flow. However, the equations of motion in matrix form

suitable for vibration control design of a submerged finite circular cylindrical shell have not yet been presented.

Many researchers who study the vibro-acoustical behavior of the baffled cylindrical shell have focused only on the

derivation of the impedance or far-field pressure of the fluid caused by the vibrations of the shell; therefore, the resulting

equations of motion are not suitable for use in designing the vibration suppression control of submerged cylindrical

shells. Furthermore, it has been difficult to estimate the change of the natural frequency of the cylindrical shell due to

the presence of the external fluid. One can resort to the finite element method or the boundary element method to

analyze fluid–structure interaction problems. However, these numerical approaches give us only quantitative results. In

this study, the added virtual mass matrix for the submerged cylindrical shell is derived by using the Rayleigh–Ritz

approach based on the baffled shell assumption. With this matrix, we can easily compute the natural vibration

characteristics of the finite cylindrical shell in contact with a fluid and derive equations of motion suitable for the design

of vibration suppression controls.
2. Kinetic and potential energies for a cylindrical shell in vacuo

The dynamic model of the circular cylindrical shell, as shown in Fig. 1, was derived in (Kwak et al., 2009). In Fig. 1,

R is the radius of the cylindrical shell mid-surface, h is the thickness, L is the length, y is the angle with respect to the

vertical axis, x is the axis along the length of the cylinder, and u, v and w are the mid-surface displacements in the

x, y and z directions, respectively. The kinetic energy for the cylindrical shell is expressed as (Leissa, 1993)

Ts ¼
1

2
r
Z L

0

Z 2p

0

Z h=2

�h=2
ð _u2 þ _v2 þ _w2ÞR dz dy dx; ð1Þ

where r is the mass density of the cylindrical shell. It is assumed that u, v and w are not functions of z, the material

properties of the shell are homogeneous and isotropic, and z is the distance to an arbitrary point on the shell from the

middle surface. According to Donnell’s shell theory, equations for strain and stress are needed to obtain the potential
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Fig. 1. Coordinate system for the baffled cylindrical shell. (a) Coordinates of baffled cylindrical shell and (b) unbounded external

fluid domain.
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energy of the cylindrical shell, which are expressed as (Blevins, 1987)

ex ¼
@u

@x
�z

@2w

@x2
; ey ¼

1

R

@v

@y
þ

w

R
�

z

R2

@2w

@y2
; exy ¼

@v

@x
þ

1

R

@u

@y
�
2z

R

@2w

@x @y
; ð2a; b; cÞ

exz ¼ eyz ¼ ezz ¼ 0; ð2dÞ

sx ¼
E

1�n2
ðex þ neyÞ; sy ¼

E

1�n2
ðey þ nexÞ; sxy ¼ syx ¼

E

2ð1þ nÞ
exy; ð3a; b; cÞ

sxz ¼ syz ¼ szz ¼ 0; ð3dÞ

where E is the Young’s modulus and n is Poisson’s ratio. The out-of-plane shear strains are assumed to be zero.

The stresses in the shell follow isotropic stress–strain relationships. The elastic strain energy of a circular cylindrical

shell, neglecting stress, szz according to Love’s first approximations, and out-of-plane shear stress is given by (Leissa,

1993)

Vs ¼
1

2

Z L

0

Z 2p

0

Z h=2

�h=2
ðsxex þ syey þ sxyexyÞR dz dy dx: ð4Þ

Inserting Eqs. (2) and (3) into Eq. (4) results in the following equation for the potential energy (Leissa, 1993):

Vs ¼
ERh

2ð1�n2Þ
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� �
@u

@y

� ��
dy dx: ð5Þ

For vibration analysis, let us express the displacement in each direction as the series of functions which have n

circumferential nodes:

uðx; y; tÞ ¼
X1
n ¼ 0

unðx; y; tÞ; vðx; y; tÞ ¼
X1
n ¼ 0

vnðx; y; tÞ; wðx; y; tÞ ¼
X1
n ¼ 0

wnðx; y; tÞ: ð6a2cÞ

when n=0, the cylindrical shell vibrates without nodal points, and its natural frequencies are higher than those of the

cylindrical shell with circumferential nodal points. Hence, we consider the case when nZ1 in the numerical calculation.
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The mathematical derivation for the free vibration analysis is exactly the same as in (Kwak et al., 2009) except for the

circumferential mode. Only the following expansions for each function in Eq. (6) are coupled (Kwak et al., 2009).

Hence, for free vibration analysis we can write

unðx; y; tÞ ¼UuðxÞ cos nyqnuðtÞ; vnðx; y; tÞ ¼UvðxÞ sin nyqnvðtÞ; wnðx; y; tÞ ¼UwðxÞ cos nyqnwðtÞ; ð7a2cÞ

where

UuðxÞ ¼ ½Fu1ðxÞFu2ðxÞ . . .FumðxÞ�; UvðxÞ ¼ ½Fv1ðxÞFv2ðxÞ . . .FvmðxÞ�; UwðxÞ ¼ ½Fw1ðxÞFw2ðxÞ . . .FwmðxÞ�;

ð7d2fÞ

qnuðtÞ ¼ ½qnu1ðtÞ qnu1ðtÞ . . . qnumðtÞ�
T; qnvðtÞ ¼ ½qnv1ðtÞqnv1ðtÞ . . . qnvmðtÞ�

T; qnwðtÞ ¼ ½qnw1ðtÞ qnw1ðtÞ . . . qnwmðtÞ�
T;

ð7g2iÞ

in which UuðxÞ; UvðxÞ; UwðxÞ represent a matrix consisting of admissible functions in each direction,

qnuðtÞ; qnvðtÞ; qnwðtÞ are generalized coordinate vectors corresponding to the cosine and sine modes, and m is the

number of admissible functions used for the longitudinal expansion. It should be noted that other sets of cosine and sine

modes should be considered for response calculations and control designs (Kwak et al., 2009).

Before inserting Eq. (6) into Eqs. (1) and (5), let us introduce the following nondimensional variables to facilitate the

numerical analysis:

x¼ x=L; a¼L=R; b¼ h=R: ð8a2cÞ

Because the displacements are expressed in series expansions of functions corresponding to each circumferential

mode, the kinetic and potential energies of the shell in vacuo can be expressed as

T ¼
X1
n ¼ 1

Tsn; V ¼
X1
n ¼ 1

Vsn; ð9a; bÞ

where Tsn and Vsn are the kinetic and potential energies corresponding to the nth circumferential mode, respectively.

Considering Eqs. (7) and (8), and inserting Eq. (6) into Eqs. (1) and (5), the kinetic and potential energies corresponding

to the n(Z1)th circumferential mode can be derived as follows (Kwak et al., 2009):

Tsn ¼
1

2
rRhLpð _qTnuMuu _qnu þ _qTnvMvv _qnv þ _qTnwMww _qnwÞ; ð10Þ

Vsn ¼
pERh

ð1�n2ÞL
1

2
qTnuKnuuqnu þ

1

2
qTnvKnvvqnv þ

1

2
qTnwKnwwqnw þ qTnuKnuvqnv þ qTnvKnvwqnw þ qTnuKnuwqnw

� �
; ð11Þ

where

Muu ¼Uuu; Mvv ¼Uvv; Mww ¼Uww; ð12a2cÞ

Knuu ¼Uuu þ
ð1�nÞa2n2

2
Uuu; Knvv ¼ a2n2Uvv þ

ð1�nÞ
2

Uvv; ð12d; eÞ

Knww ¼ a2Uww þ
b2

12

Ûww

a2
þ a2n4Uww�2nn2 ~Uww þ 2ð1�nÞn2Uww

 !
; ð12fÞ

Knuv ¼ nna ~Uuv�
ð1�nÞan

2
Ûuv; Knuw ¼ na ~Uuw; Knvw ¼ a2nUvw; ð12g2iÞ
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in which

Uuu ¼

Z 1

0

UT
u Uu dx; Uvv ¼

Z 1

0

UT
v Uv dx; Uww ¼

Z 1

0

UT
wUw dx; Uvw ¼

Z 1

0

UT
v Uw dx; ð13a2dÞ

Uuu ¼

Z 1

0

U0Tu Uu
0 dx; Uvv ¼

Z 1

0

U0Tv Uv
0 dx; Uww ¼

Z 1

0

U0TwUw
0 dx; ~Uuv ¼

Z 1

0

U0Tu Uv dx; ð13e2hÞ

~Uuw ¼

Z 1

0

U0Tu Uw dx; ~Uww ¼

Z 1

0

U00TwUw dx; Ûuv ¼

Z 1

0

UT
u Uv
0 dx; Ûww ¼

Z 1

0

U00TwUw
00 dx: ð13i2lÞ

3. Fluid–structure interaction

Let us consider the cylindrical shell located in a baffle of a rigid cylinder, as shown in Fig. 1. The governing equation

for the fluid in contact with the shell is the Laplace equation which is given by

r2f¼ 0: ð14Þ

The fluid is assumed to be inviscid, incompressible and irrotational. In the case of the baffled shell, the boundary

condition at the fluid–structure interface is as follows:

@f
@r
¼
� _wðx; y; tÞ at r¼R; 0 � x � L;

0 at r¼R; otherwise:

(
ð15Þ

Eq. (15) shows why infinitely long rigid cylinders are connected to both ends of the cylindrical shell. Otherwise, the

addressed problem cannot be solved by the analytical approach. The velocity potential must also satisfy the radiation

conditions which imply that the velocity potential should converge to zero

f;
@f
@r
;
@f
@x

-0 as x; r-1: ð16Þ

If we express the velocity potential in terms of the series expansion of the velocity potential for each circumferential

mode as we do for the shell deflection in Eq. (6), we can write

fðr; x; y; tÞ ¼
X1
n ¼ 1

fnðr; x; y; tÞ; ð17Þ

where

fnðr; x; y; tÞ ¼ cos ny Wnðr; xÞ _qnwðtÞ; ð18Þ

in which Wnðr; xÞ ¼ Cn1 Cn2 . . . Cnm

� �
represents the vector of the admissible potential function corresponding to

each generalized coordinate. Each velocity potential should also satisfy the Laplace equation so that we can obtain the

following equation by inserting Eq. (18) into Eq. (14):

@2Cni

@r2
þ

1

r

@Cni

@r
�

n2

r2
Cni þ

@2Cni

@x2
¼ 0; i¼ 1; 2; . . . ;m: ð19Þ

Let us introduce the Fourier transform of each potential function defined as

Cniðr; xÞ ¼
Z 1
�1

Cniðr; xÞe
�jxx dx: ð20Þ

Applying the Fourier transform, Eq. (20), into Eq. (19) results in

d2Cni

dr2
þ
1

r

dCni

dr
�

n2

r2
þ x2

� �
Cni ¼ 0: ð21Þ
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The general solution of Eq. (21) is found to be

Cniðr; xÞ ¼AniInðjxjrÞ þ BniKnðjxjrÞ; ð22Þ

where In, Kn are modified Bessel functions of the first and second kind, respectively. The radiation condition, Eq. (16),

implies that the potential should decay exponentially. Hence, we can write

Cniðr; xÞ ¼BniKnðjxjrÞ: ð23Þ

Inserting Eq. (17) into Eq. (15) and using Eqs. (7c) and (18) results in

@Cni

@r
¼
�Fwi at r¼R; 0 � x � L;

0 at r¼R; otherwise:

(
ð24Þ

Applying the Fourier transform to Eq. (24) leads to

dCniðr; xÞ
dr r ¼ R

¼�

Z L

0

FwiðxÞe
�jxx dx:

���� ð25Þ

Hence, the unknown coefficient of the general solution can be obtained by inserting Eq. (23) into Eq. (25):

Bn ¼
�1

dKnðjxjrÞ=drjr ¼ R

Z L

0

FwiðxÞe
�jxx dx: ð26Þ

By inserting Eq. (26) into Eq. (23), we can then obtain the Fourier transform of the velocity potential function in

closed form

Cniðr; xÞ ¼
�KnðjxjrÞ

dKnðjxjrÞ=drjr ¼ R

Z L

0

FwiðxÞe
�jxx dx: ð27Þ

The inverse Fourier transform is expressed as

Cniðr; xÞ ¼
1

2p

Z 1
�1

Cniðr; xÞe
jxx dx: ð28Þ

Inserting Eq. (27) into Eq. (28) results in

Cniðr;xÞ ¼
�1

2p

Z 1
�1

KnðjxjrÞ
dKnðjxjrÞ=drjr ¼ R

Z L

0

FwiðxÞe
�jxx dxejxx dx: ð29Þ

Using the symmetry condition, we can express the above equation as follows:

Cniðr;xÞ ¼
�1

p

Z 1
0

KnðxrÞ

dKnðxrÞ=drjr ¼ R

Z L

0

FwiðxÞcos xðx�xÞ dx dx: ð30Þ

Eqs. (30) and (18) can be used to compute the velocity potential at an arbitrary location in three-dimensional fluid

space. Let us derive the kinetic energy of the fluid due to the vibration of the shell. The kinetic energy of a fluid is

expressed as follows:

Tf ¼�
1

2
rf

Z 2p

0

Z L

0

f
@f
@r

� �
r ¼ R

dx R dy; ð31Þ
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where rf is the mass density of the fluid. Using Eqs. (15), (17) and (30), Eq. (31) turns out to be

Tf ¼
X1
n ¼ 1

Tfn ¼
X1
n ¼ 1

1

2
_qTnwMfwn _qnw; ð32Þ

where

Mfwn ¼ rf Rp
Z L

0

WT
fnUwjr ¼ R dx ð33Þ

represents the added virtual mass matrix due to the presence of the fluid and the element of the matrix can be

expressed as

ðMfwnÞij ¼ rf R

Z 1
0

�KnðxRÞ

dKnðxrÞ=drjr ¼ R

Z L

0

Z L

0

FwiðxÞFwjðxÞcos xðx�xÞ dx dx dx: ð34Þ

Introducing nondimensional variables, x¼LZ, x ¼LZ, x ¼Rx, in addition to Eq. (8), into Eqs. (33) and (34), we

can obtain

Mfwn ¼ rf RL2pMfwn; ð35Þ

where the element of the nondimensionalized mass matrix can be expressed as

ðMfwnÞij ¼
1

p

Z 1
0

�KnðxÞ�
�xKnþ1ðxÞ þ nKnðxÞ

	 Z 1

0

Z 1

0

FwiðZÞFwjðZÞcos xðx�ZÞ dZ dZ dx: ð36Þ

We have derived the analytical expression for the added virtual mass matrix as shown above. However, the above

expression consists of triple integrals and does not permit a closed-form solution, so a numerical integration technique

needs to be used to compute the added virtual mass matrix. The integral limits of x become a concern when doing the

numerical integration. Numerical computations demonstrated that the integrand of Eq. (36) quickly converges to zero

as x becomes large. It was also found from the asymptotic property of the Bessel function that the integrand has the

following limit as x goes to zero:

�KnðxÞ�
�xKnþ1ðxÞ þ nKnðxÞ

	- 1

n
as x-0: ð37Þ

These two properties of the integrand were used when evaluating the integral, Eq. (36), numerically.

The total kinetic energy for the nth circumferential mode is the summation of the kinetic energy of the shell and the

kinetic energy of the fluid

Tn ¼Tsn þ Tfn: ð38Þ

Inserting Eqs. (10) and (32) into Eq. (38) and using Eq. (35), we can obtain

Tn ¼
1

2
rRhLp½ _qTnuMuu _qnu þ _qTnvMvv _qnv þ _qTnwðMww þ gMfwnÞ _qnw�; ð39Þ

where g¼ rf L=rh is the nondimensional factor. Eq. (39) shows that the added virtual mass due to the presence of the

fluid appears in the z-directional motion.
4. Eigenvalue problem

Considering the kinetic and potential energy expressions given by Eqs. (11) and (39), the free vibrations of the

cylindrical shell in fluid for the nth circumferential mode can be derived as follows:

ðrRhLpÞðMa þ gMfnÞ €qn þ
ERhp
ð1�n2ÞL

Knqn ¼ 0; n¼ 1; 2; . . . ; ð40Þ



ARTICLE IN PRESS
M.K. Kwak / Journal of Fluids and Structures 26 (2010) 377–392384
where qnðtÞ ¼ ½q
T
nu q

T
nv q

T
nw�

Tand

Ma ¼

Muu 0 0

0 Mvv 0

0 0 Mww

2
64

3
75; Mfn ¼

0 0 0

0 0 0

0 0 Mfwn

2
64

3
75; Kn ¼

Knuu Knuv Knuw

KT
nuv Knvv Knvw

KT
nuw KT

nvw Knww

2
64

3
75: ð41a2cÞ

The eigenvalue problem for each circumferential mode can then be written as follows:

½Kn�o2
fnðMa þ gMfnÞ�qn ¼ 0; n¼ 1; 2; . . . ; ð42Þ

where ofn ¼ofn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1�n2ÞL2=E

p
represents the nondimensionalized natural frequency in fluid.

Let us consider the eigenvalue problem of the cylindrical shell vibrating in vacuo. In this case, we have

½Kn�o2
anMa�q

a
n ¼ 0; n¼ 1; 2; . . . ð43Þ

The eigenvalue problem admits the following orthonormality conditions:

UT
n KnUn ¼X

2

an; UT
nMaUn ¼ I: ð44Þ

If we apply the modal transformation, qn ¼Un1n, to the eigenvalue problem of the cylindrical shell vibrating in the

fluid, Eq. (42), and pre-multiply it by UT
n , we can obtain

½X
2

an�X
2

fnðIþ gMfnÞ�1n ¼ 0; n¼ 1; 2; . . . ; ð45Þ

where Mfn ¼UT
n MfnUn. If we assume that the natural mode of the cylindrical shell does not change in the fluid, which

implies that Mfn is a diagonally dominant matrix, we may simplify Eq. (45):

ðofnÞi ¼
ðoanÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gGni

p ; i; n¼ 1; 2; . . . ; ð46Þ

where Gni ¼ ðMfnÞii represents the so-called nondimensionalized added virtual mass incremental (NAVMI) factor. This

formula can be effectively used to estimate the change of the natural frequency due to the presence of the fluid.
5. Numerical results

As a numerical example, a cylindrical shell under the shear diaphragm boundary condition at both ends is considered.

In this case, the boundary conditions at both ends are

v¼w¼Mx ¼Nx ¼ 0: ð47Þ

The admissible functions that satisfy the above boundary conditions can be expressed as (Leissa, 1993)

FuiðxÞ ¼
ffiffiffi
2
p

cos
ipx

L
; FviðxÞ ¼FwiðxÞ ¼

ffiffiffi
2
p

sin
ipx

L
; i¼ 1; 2; . . . ;m ð48Þ

Inserting Eq. (48) into Eq. (13) and inserting the results into Eq. (12), we can calculate the mass and stiffness matrices

for each nth circumferential mode. Furthermore, inserting Eq. (48) into Eq. (36), we can calculate the added virtual

mass matrix due to the fluid effect. It was found from numerical experiments that the infinite integral limit of Eq. (36)

can be replaced by 10 with sufficient accuracy.

Figs. 2–6 show the nondimensionalized natural frequencies of the cylindrical shell in vacuo for each circumferential

mode when b=0.01. Figs. 7–11 show the nondimensionalized natural frequencies of the cylindrical shell in vacuo for

each circumferential mode when b=0.02. As shown in Figs. 2–11, the radius-to-length ratio, a, greatly affect the

natural frequencies but the effect of the thickness-to-radius ratio, b, on the natural frequencies is not significant for

small values of b.
Figs. 12–16 show the nondimensionalized added virtual mass incremental (NAVMI) factor that appeared in Eq. (46)

for each circumferential mode when b=0.01. The NAVMI factor did not change significantly when b was changed to

0.02, so the case of b=0.02 was omitted. As shown in Figs. 12–16, the NAVMI factors decrease monotonically as a
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Fig. 3. Nondimensionalized natural frequency (n=3, b=0.01).

Fig. 2. Nondimensionalized natural frequency (n=2, b=0.01).

Fig. 4. Nondimensionalized natural frequency (n=4, b=0.01).
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Fig. 6. Nondimensionalized natural frequency (n=6, b=0.01).

Fig. 5. Nondimensionalized natural frequency (n=5, b=0.01).

Fig. 7. Nondimensionalized natural frequency (n=2, b=0.02).
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Fig. 9. Nondimensionalized natural frequency (n=4, b=0.02).

Fig. 8. Nondimensionalized natural frequency (n=3, b=0.02).

Fig. 10. Nondimensionalized natural frequency (n=5, b=0.02).
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Fig. 11. Nondimensionalized natural frequency (n=6, b=0.02).

Fig. 12. Nondimensionalized added virtual incremental factor (n=2, b=0.01).

Fig. 13. Nondimensionalized added virtual incremental factor (n=3, b=0.01).
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Fig. 15. Nondimensionalized added virtual incremental factor (n=5, b=0.01).

Fig. 14. Nondimensionalized added virtual incremental factor (n=4, b=0.01).

Fig. 16. Nondimensionalized added virtual incremental factor (n=6, b=0.01).
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Table 1

Comparison of natural frequencies in vacuo.

Mode Berot and Peseux (1998) Current method

(5,1) 142.9Hz 142.86

(4,1) 145.7 145.73

(6,1) 176.7 176.67

(3,1) 210.4 210.36

(7,1) 230.1 230.13

(6,2) 281.1 281.14

(7,2) 290.8 290.79

(8,1) 296.3 296.28

Table 2

Comparison of natural frequencies in water.

Mode Berot and Peseux (1998) Current method

(4,1) 66.4Hz 66.25

(5,1) 69.9 69.84

(3,1) 88.5 87.84

(6,1) 91.8 91.76

(7,1) 125.8 125.76

(6,2) 148.8 148.50

(2,1) 149.7 146.37

(7,2) 161.1 160.85
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increases. This implies that the effect of the fluid on the natural frequencies decreases as the length of the shell increases.

The NAVMI factors decrease as the number of circumferential modes increases. In addition, the NAVMI factors in

each circumferential mode decrease as the order of natural frequency increases, which implies that the effect of the fluid

is significant for lower natural frequencies, as concluded in other cases (Amabili, 1997; Kwak, 1997).

The nondimensionalized natural frequencies of the cylindrical shell in vacuo shown in Figs. 2–11, along with the

NAVMI factors shown in Figs. 12–16, can be effectively used in the estimation of the natural frequencies of the

submerged cylindrical shell. For instance, once the dimension and material properties of the cylindrical shell are

known, the natural frequencies in vacuo can be easily read from Figs. 2–11 and the NAVMI factors can be read from

Figs. 12–16. The natural frequencies of the immersed cylindrical shell can then be determined by using the simple

formula, Eq. (46). If the natural frequencies of the cylindrical shell in vacuo are measured by vibration testing, then the

natural frequencies of the cylindrical shell in fluid can be estimated by using the simple formula, Eq. (46).

For comparison, natural frequencies obtained by the current method are compared to those obtained by Berot and

Peseux (1998). The shell considered by Berot and Peseux (1998) has the following material properties: L=1.2m,

h=0.003m, R=0.4m, E=200GPa, n=0.3, r=7850kg/m3, rf=1000kg/m3. Table 1 shows the natural frequencies

in vacuo and Table 2 shows the natural frequencies in water. Natural frequencies in air obtained by the current method

are the same as those obtained by Berot and Peseux (1998). This is obvious because Berot and Peseux (1998) also used

the Donnell–Mushtari theory. As shown in Table 2, the natural frequencies obtained by the current method are almost

equal to those obtained by Berot and Peseux (1998), except for the sequence of the (2,1) and (6,2) modes. However, the

natural frequencies of the (2,1) and (6,2) modes are close to each other, so that their sequence is not a substantial

problem in real applications.
6. Summary and conclusions

In this study, the hydroelastic behavior of the cylindrical shell was discussed. The equations of motion for the

cylindrical shell were derived using the Rayleigh–Ritz method and presented in matrix form, which were suitable for
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predicting changes in the natural frequencies and for the design of vibration suppression controls. The effect of the fluid

on the equations of motion appears as the added virtual mass matrix. In this study, the added mass matrix reflecting the

presence of the fluid was derived by assuming a baffled shell and solving the Laplace equation by applying the Fourier

transform method. Based on the assumption that the natural modes of the cylindrical shell do not change due to the

presence of the fluid, the nondimensionalized added virtual mass incremental (NAVMI) factor was derived.

Numerical computations were carried out for the cylindrical shell with a shear diaphragm at both ends. The effect of

the fluid on the natural frequencies of the cylindrical shell decreased as the length of the shell increased, and the fluid

affected the lower natural frequencies to a great extent. Nondimensionalized natural frequencies and the NAVMI

factors were presented as graphs, which can be effectively used in the estimation of the natural frequencies of cylindrical

shells in a fluid.

Comparison with previous work shows the efficacy of the proposed method.
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